Tunable microwave frequency performance of nanocomposite Co2MnSi/PZN-PT magnetoelectric coupling structure.
نویسندگان
چکیده
Nanocrystalline Co2MnSi Heusler alloy films were deposited on the PZN-PT substrates by a composition gradient sputtering method. It is revealed that this multiferroic heterostructure shows very strong magnetoelectric coupling, leading to continuously tunable microwave frequency characteristics by electric field. With the increase of electric field intensity from 0 to 6 kV/cm, the magnetic anisotropy field H(K) increases from 90 Oe to 182 Oe with an increment of 102%, corresponding to a ME coefficient of 15.3 Oe cm/kV; the ferromagnetic resonance frequency f(FMR) shifts from 3.38 to 4.82 GHz with an increment of deltaf(FMR) = 1440 MHz or deltaf(FMR)/f(FMR) = 43%; moreover, the damping constant alpha dramatically decreases from 0.035 to 0.018. These merits demonstrate that this nanocomposite multiferroic structure is promising in fabrication of tunable microwave components.
منابع مشابه
Driving ferromagnetic resonance frequency of FeCoB/PZN-PT multiferroic heterostructures to Ku-band via two-step climbing: composition gradient sputtering and magnetoelectric coupling
RF/microwave soft magnetic films (SMFs) are key materials for miniaturization and multifunctionalization of monolithic microwave integrated circuits (MMICs) and their components, which demand that the SMFs should have higher self-bias ferromagnetic resonance frequency fFMR, and can be fabricated in an IC compatible process. However, self-biased metallic SMFs working at X-band or higher frequenc...
متن کاملElectric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates
E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is cr...
متن کاملMicrowave and MM-wave magnetoelectric interactions in ferrite-ferroelectric bilayers
Measurements of the strength of magnetoelectric (ME) interactions at microwave and millimeterwave frequencies have been carried out on layered ferrite-piezoelectric oxides. An electric field E applied to the composite produces a mechanical deformation, resulting in a field shift δHE or a frequency shift δfE in the resonance. A stripline structure or a cavity resonator was used. The strength of ...
متن کاملQuantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface
Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanism...
متن کاملVoltage control of magnetism in multiferroic heterostructures.
Electrical tuning of magnetism is of great fundamental and technical importance for fast, compact and ultra-low power electronic devices. Multiferroics, simultaneously exhibiting ferroelectricity and ferromagnetism, have attracted much interest owing to the capability of controlling magnetism by an electric field through magnetoelectric (ME) coupling. In particular, strong strain-mediated ME in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2013